Chapitre 5 : Vecteurs propres et valeurs propres

Exemple

Définition 50 (vecteur propre).

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Alors $\vec{v} \in \mathbb{R}^n$ est un vecteur propre de A si $v \neq 0$ et s'il existe $\lambda \in \mathbb{R}$ tel que $A\vec{v} = \lambda \vec{v}$.

On appelle λ la $valeur\ propre$ associée à v.

Exemple Trouvons $\lambda \in \mathbb{R}$ tel que $A\vec{v} = \lambda \vec{v}$ pour A =

Généralisation à \mathbb{R}^n Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Déterminons les valeurs propres et les vecteurs propres associés :
Définition 51 (espace propre). Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice et $\lambda \in \mathbb{R}$ une valeur propre de A . Alors l'espace propre E_{λ} associé à la valeur propre λ est défini par

Théorème 46. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Alors $\lambda \in \mathbb{R}$ est une valeur propre de A si et seulement si

Définition 52 (équation et polynôme caractéristique). Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. L'équation $\det(A - \lambda I_n) = 0$ s'appelle l'équation caractéristique de A. On pose

Remarque

Théorème 47. Une matrice $A \in M_{n \times n}(\mathbb{R})$ admet au plus n valeurs propres distinctes.

Définition 53 (multiplicité algébrique).

On appelle la multiplicité algébrique d'une valeur propre sa multiplicité en tant que racine de $p_A(\lambda)$.

Exemples

Définition 54.								
Soit $A \in M_{n \times n}(\mathbb{R})$	une	matrice.	On	appelle	la trace	de A	le nombi	ſе
Cas particuliers								
Remarques								
Exemples								

Théorème 48. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice avec $\lambda_1, \ldots, \lambda_r$ des valeurs propres distinctes $(r \leq n)$. Alors si $\vec{v}_1, \ldots, \vec{v}_r$ sont des vecteurs propres associés aux valeurs propres $\lambda_1, \ldots, \lambda_r$, la famille $(\vec{v}_1, \ldots, \vec{v}_r)$ est linéairement indépendante.

Cas particulier de $\lambda = 0$

Théorème 49. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Alors $\lambda = 0$ est une valeur propre de A si et seulement si A est singulière.

En particulier, A est inversible si et seulement si $\lambda = 0$ n'est pas une valeur propre de A.